The Snail protein family regulates neuroblast expression of inscuteable and string, genes involved in asymmetry and cell division in Drosophila.
نویسندگان
چکیده
Delaminated neuroblasts in Drosophila function as stem cells during embryonic central nervous system development. They go through repeated asymmetric divisions to generate multiple ganglion mother cells, which divide only once more to produce postmitotic neurons. Snail, a zinc-finger transcriptional repressor, is a pan-neural protein, based on its extensive expression in neuroblasts. Previous results have demonstrated that Snail and related proteins, Worniu and Escargot, have redundant and essential functions in the nervous system. We show that the Snail family of proteins control central nervous system development by regulating genes involved in asymmetry and cell division of neuroblasts. In mutant embryos that have the three genes deleted, the expression of inscuteable is significantly lowered, while the expression of other genes that participate in asymmetric division, including miranda, staufen and prospero, appears normal. The deletion mutants also have much reduced expression of string, suggesting that a key component that drives neuroblast cell division is abnormal. Consistent with the gene expression defects, the mutant embryos lose the asymmetric localization of prospero RNA in neuroblasts and lose the staining of Prospero protein that is normally present in ganglion mother cells. Simultaneous expression of inscuteable and string in the snail family deletion mutant efficiently restores Prospero expression in ganglion mother cells, demonstrating that the two genes are key targets of Snail in neuroblasts. Mutation of the dCtBP co-repressor interaction motifs in the Snail protein leads to reduction of the Snail function in central nervous system. These results suggest that the Snail family of proteins control both asymmetry and cell division of neuroblasts by activating, probably indirectly, the expression of inscuteable and string.
منابع مشابه
A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila
BACKGROUND In the fruit fly Drosophila, the Inscuteable protein localises to the apical cell cortex in neuroblasts and directs both the apical-basal orientation of the mitotic spindle and the basal localisation of the protein determinants Numb and Prospero during mitosis. Asymmetric localisation of Inscuteable is initiated during neuroblast delamination by direct binding to Bazooka, an apically...
متن کاملMicrotubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts.
Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Galphai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughter-cell-size a...
متن کاملMicrotubule-Induced Pins/Gαi Cortical Polarity in Drosophila Neuroblasts
Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Gai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughtercell-size asymme...
متن کاملDeletion analysis of the Drosophila Inscuteable protein reveals domains for cortical localization and asymmetric localization
The Drosophila Inscuteable protein acts as a key regulator of asymmetric cell division during the development of the nervous system [1] [2]. In neuroblasts, Inscuteable localizes into an apical cortical crescent during late interphase and most of mitosis. During mitosis, Inscuteable is required for the correct apical-basal orientation of the mitotic spindle and for the asymmetric segregation of...
متن کاملInscuteable and Staufen Mediate Asymmetric Localization and Segregation of prosperoRNA during Drosophila Neuroblast Cell Divisions
When neuroblasts divide, inscuteable acts to coordinate protein localization and mitotic spindle orientation, ensuring that asymmetrically localized determinants like Prospero partition into one progeny. staufen encodes a dsRNA-binding protein implicated in mRNA transport in oocytes. We demonstrate that prospero RNA is also asymmetrically localized and partitioned during neuroblast cell divisio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 128 23 شماره
صفحات -
تاریخ انتشار 2001